My research interests have been expanding over the course of my PhD. They range from Scientific Machine learning and Computational Fluid Dynamics to optimization of power distribution networks and hydroelasticity & seakeeping of offshore platforms and vessels. For an up to date list of my publications, my google schoolar profile can be consulted here.
Journal papers:
- Parra Rubio, Alfonso and Fan, Dixia and Jenett, Benjamin and del Aguila Ferrandis, Jose and Tourlomousis, Filippos and Abdel-Rahman, Amira and Preiss, David and Triantafyllou, Michael and Gershenfeld, Neil. Modular Morphing Lattices for Large-Scale Underwater Continuum Robotic Structures. Soft Robotics, 2023.
- Andreas P. Mentzelopoulos and José del Águila Ferrandis and Samuel Rudy and Themistoklis Sapsis and Michael S. Triantafyllou and Dixia Fan. VIV, Vortex induced vibrations, Flexible body VIV, Flexible cylinder, Riser, Marine riser, Catenary riser, SCR, Optimization, Learning, Parametric hydrodynamic coefficient database. Ocean Engineering, 2022.
- Samuel Rudy and Dixia Fan and Jose del Aguila Ferrandis and Themistoklis P. Sapsis and Michael S. Triantafyllou. Optimized parametric hydrodynamic databases provide accurate response predictions and describe the physics of vortex-induced vibrations. Journal of Fluids and Structures, 2022.
- Jose del Aguila Ferrandis, Chryssostomos Chryssostomidi, Michael Triantafyllou, Karniadakis, G. E. Learning functionals via LSTM neural networks for predicting vessel dynamics in extreme sea statesProc. R. Soc. A.47720190897. Proceedings of the Royal Society A.
- Xuhui Meng and Liu Yang and Zhiping Mao and José del Águila Ferrandis and George Em Karniadakis. Learning functional priors and posteriors from data and physics. Journal of Computational Physics, 2022.
- Jose del Aguila Ferrandis, Luca Bonfiglio, Ricardo Zamora Rodrıguez, Chryssostomos Chryssostomidis, Odd Magnus Faltinsen, and Michael Triantafyllou. Influence of viscosity and non-linearitiesin predicting motions of a wind energy offshore platform in regular waves. Journal of OffshoreMechanics and Arctic Engineering, 142(6), 2020
- Bonfiglio, L., Perdikaris, P., del Águila, J., & Karniadakis, G. E. A probabilistic framework for multi‐disciplinary design: Application to the hydro‐structural optimization of super‐cavitating hydrofoils. International Journal for Numerical Methods in Engineering.
- del Águila Ferrandis, José, Brizzolara, Stefano and Chryssostomidis, Chryssostomos. "Influence of large hull deformations on the motion response of a fast catamaran craft with varying stiffness." Ocean Engineering 163 (2018): 207-222.
Conference papers:
- Mentzelopoulos, Andreas and del Águila Ferrandis, José and Fan, Dixia and Rudy, Samuel and Sapsis, Themistoklis and Triantafyllou, Michael. Inferring Optimal Hydrodynamic Databases for Vortex Induced Cross Flow Vibration Prediction of Marine Risers Using Limited Sensor Measurements.
- J. Ferrandis, R. Rodriguez, C. Chryssostomidis, L. Bonfiglio. Influence of Viscosity and Non-linearities in Predicting Motions of a Wind Energy Offshore Platform in Regular Waves. Accepted paper for Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. OMAE2018-78127. June 17-22, 2018, Madrid, Spain.
- José del Águila Ferrandis, Julie Chalfant, Chathan M. Cooke, Chryssostomos Chryssostomidis. Design of a Power Corridor Distribution Network. 2019 IEEE Electric Ship Technologies Symposium (ESTS). 14-16 Aug. 2019, Washington, DC, USA, USA.
Preprints:
- Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, Akshay Subramaniam, Kaustubh Tangsali, Max Rietmann, Jose del Aguila Ferrandis, Wonmin Byeon, Zhiwei Fang, and Sanjay Choudhry. Nvidia simnetˆ{TM}: an ai-accelerated multi-physics simulation framework.arXivpreprint arXiv:2012.07938, 2020
- José del Águila Ferrandis, Michael Triantafyllou, Chryssostomos Chryssostomidis, George Karniadakis. Learning functionals via LSTM neural networks for predicting vessel dynamics in extreme sea states. arXiv preprint arXiv:1912.13382.